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Abstract—The ensemble of Convolutional Neural Networks
(CNNs) is known to be more accurate and robust than the
component CNNs models. Along with the development of a fast
training method, current research has managed to make an effec-
tive ensemble of several CNNs models and require no additional
training cost. However, when the ensemble size of CNNs is further
increased, it is hard to observe a corresponding performance
enhancement. According to the generalization capability analysis
of CNNs, this phenomenon can be explained by the over-
saturation of model capacity and the close correlation among the
component CNNs, especially when the CNNs are trained within
the same dataset. To address this problem, we propose to train
CNNs on re-sampled bootstrap datasets. Extensive experiments
demonstrate the bootstrap re-sampling is effective for a large
ensemble size (up to 80). Besides, benefiting from the usage of the
bootstrap re-sampling technique, we can also have an unbiased
estimate of the standard deviation of the ensemble output.

Index Terms—CNNs, Bootstrap re-sampling, Large ensemble
size, Unbiased estimation of standard deviation.

I. INTRODUCTION

Using the ensemble of Convolutional Neural Networks
(CNNs) has achieved great success on various computer vision
tasks, such as crowd counting [1], facial landmark point
detection [2], and object detection [3]. In the current research,
the most frequent ensemble strategy on CNNs is the Multi-
Column (MC) approach [4], which trains many homogeneous
CNNs from scratch repeatedly and simply averages their
output at the test stage. To date, despite the improvements
in computer hardware enable the training of very deep single
CNNs on a large dataset, training many CNNs from scratch is
still a cumbersome work, which largely limits its application
in practice.

The Snapshot Ensemble (SE) [5] strategy is proposed to
speed up the repetitive training of many homogeneous CNNs.
It uses the cyclic annealing training [6] method to quickly
obtain several local optima CNNs models in only one-time
training. When the ensemble size of CNNs is not large, for
example, making an ensemble of m (e.g., m ≤ 8) CNNs mod-
els, it is a very effective strategy. However, when the ensemble

This work is supported in part by the National Key Research and De-
velopment Program of China under Grant 2018YFB1800204, the National
Natural Science Foundation of China under Grant 61771273, the RD Program
of Shenzhen under Grant JCYJ20180508152204044, and the research fund
of PCL Future Regional Network Facilities for Large-scale Experiments and
Applications (PCL2018KP001).
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Fig. 1. The flow diagram (Left) and illustrated graph (Right) for learning the
ensemble of CNNs via bootstrap re-sampling. In the proposed strategy, we
train B×M CNNs on re-sampled datasets and then aggregate the output of
selected models. As the model diversity of obtained CNNs is large, we make
a large ensemble size (e.g., 80; B = 20,m = 4) possible.

size is further increased, the performance enhancement will be
small, or even beginning to degenerate.

Then, it is intuitive that model diversity [7] is important
for further improving ensemble performance. The diversity
encouraging ensemble (DEE) [8] strategy proposes to set
different dropout [9] rates on different CNNs. By this way, it
is able to diversify the architecture of component CNNs and
enhance the diversity of obtained models to some extent. As a
result, the DEE makes a larger ensemble of CNNs possible
for the action recognition task. In their research, the best
performance is achieved with an ensemble size of m = 15.

However, both of the SE and DEE strategies train all CNNs
on the same one dataset. It potentially limits the possible larger
value of ensemble size m. This point of view is supported
by the generalization capability analysis of CNNs. On the
one hand, a deep CNNs is already demonstrated to possess
a capacity to memorize the entire training dataset [10]. It
indicates that every component CNNs has a powerful strength.
On the other hand, some studies [11]–[13] show that different
component CNNs may have a close correlation. In [11], it
first finds out a multi-bends low-loss pathway in the energy
landscape (or, the loss surface) between two homogeneous
CNNs. Then, the Fast Geometric Ensembling (FGE) [12]
simplifies the form of the connecting pathway. It shows that
two different CNNs can be linked in their loss surface, just
with a one-bend polygonal chain or first-order Bezier curve.



These findings offer a clue about the failure of large ensemble
size, which is highly related to the strength and correlation
properties among component CNNs.

Therefore, the current ensemble strategies might have a
very severe over-saturation on the model capacity, especially
when the training data of every component CNNs remains
unchanged. With this knowledge, to make a larger ensemble
of CNNs possible, we propose to train CNNs on B re-
sampled bootstrap datasets. As different dataset usually imply
different solution space, this approach can achieve a larger
model diversity among these component CNNs. Besides, from
a statistical perspective, the bootstrap re-sampling [14] strategy
can also be used for estimating the unbiased standard deviation
of ensemble output. The high-level view of our framework
is illustrated in Figure 1. To test the effect of the proposed
method, we conduct comprehensive experiments on the CIFAR
and the Tiny ImageNet benchmarks, using the ResNet and
DenseNet to be the backbone networks.

It is worthwhile to highlight two key points of this paper:
• We achieve a further performance enhancement for the

ensemble of CNNs, by training every CNNs models on
re-sampled bootstrap datasets, even when the ensemble
size is increased to a large value (e.g. 80).

• Due to the statistical usage of bootstrap re-sampling, we
can estimate the unbiased standard deviation value of
every ensemble output, which measures how reliable the
ensemble is.

II. PRELIMINARIES

A. Cyclic Annealing Training (CAT)

CNNs architectures such as ResNet [15] and DenseNet [16]
usually have millions of parameters. A study [17] demon-
strated that the more parameters, the more possible local
minima could be visited in the training process. As the corre-
sponding CNNs models of those local minima make different
mistakes, the ensemble can reduce the error rates significantly.
With this knowledge, the Snapshot Ensemble (SE) [5] strategy
first adopts a Cycle Annealing Training (CAT) [6] method to
obtain many local minima CNNs models.

Specifically, the CAT method generates many local optima
CNNs models in a single training process. It abruptly raises
the learning rate α and then quickly decreases it with a cosine
function as below:

α(t) =
α0

2
(cos(

πmod(t− 1, dT/Me)
dT/Me

) + 1), (1)

where t is the current epoch number, T is the total epoch
number, α0 is the initial learning6 rate, and the total training
epochs are divided into M cycles.

B. Bootstrap Re-sampling

In order to benefit from the ensemble, the individual pre-
dictor of bagging [18] ensemble is usually required to be
uncorrelated enough [14]. Random forests [7] achieve this
decorrelation with bootstrap resampled datasets and random
feature subspace selection. In this paper, we introduce the

bootstrap re-sampling technique to improve the ensemble of
CNNs, because both of the decision tree and neural networks
are low-bias and high-variance function predictor [7].

In the prediction problem, assume the original training set
D = (xi, zi), i = 1, ..., n has n samples and is composed of
feature X(xi, i = 1, ..., n) and label Z(zi, i = 1, ..., n). A pre-
dictor (e.g. CNNs) fD(xi) = ẑi can be trained on this dataset.
Then, if the prediction error is within a MSE criterion (or the
Cross Entropy in classification problem), it can be denoted as
err = 1

n

∑n
i=1(zi − ẑi)2. If we use the bootstrap re-sampling

technique to generate B datasets Db = (Xb, Zb), b = 1, ..., B,
the prediction error will be:

êrr
b
=

1

n

n∑
i=1

(zbi − ẑi
b)2, b = 1, ..., B, (2)

where ẑib = fDb(xi) is the corresponding predicted output, in
which the component CNNs is trained with dataset Db. Then,
bootstrap re-sampling also brings in an unbiased estimation of
the standard deviation of output:

v̂e = [

B∑
b=1

(êrr
b − êrrAVG

)2/(B − 1)]1/2, (3)

where êrr
AVG

=
∑B

b=1êrr
b
/B is a simple average among

these outputs. Although the accuracy is usually the primary
performance criterion of a predictor, the standard error is also
important for evaluating the reliability of a predictor. From the
experience of statistics [14]: in complicated situations (such
as ensemble of CNNs), B ≥ 25 is usually sufficient for
calculating a useful value of v̂e.

III. THE PROPOSED ENSEMBLE STRATEGY

A. CAT CNNs on Re-sampled Bootstrap Datasets

Our proposed ensemble strategy aims to train the com-
ponent CNNs with many re-sampled bootstrap datasets fast.
To achieve this, we use the CAT and bootstrap sampling
techniques. This procedure is described in Algorithm 1.

Algorithm 1 The proposed ensemble strategy
1: Given the training set, we make B bootstrap datasets, by

randomly re-sampling the samples with replacement.
2: Successively train the CNNs on these datasets with the

efficient cyclic annealing training (CAT) method. In every
dataset, we will obtain M different local optimal CNNs.

3: At the test time, select m(m < M ) CNNs from every
dataset. Then aggregate the outputs of B×m CNNs.

4: The unbiased standard error of the ensemble output can
be estimated, with the formula (3).

Our strategy aims to train a large ensemble of CNNs and has
a corresponding performance enhancement. To achieve this,
we need to trade-off the volume and diversity of the training
dataset, as both of them are important for the generalization
ability of CNNs. In practice, we can use a parameter t to
control the size of the resampled dataset. When sample size
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Fig. 2. A high-level illustration of the proposed strategy. Left: Train CNNs on two successive re-sampled bootstrap datasets with cyclic annealing parameters
T = 150 and M = 6. Right: Then several (here we set m = 5) local minima CNNs will be selected to form an ensemble model. Notice that different
bootstrap dataset implies different solution space.

of original dataset is denoted as n, for any sample i belonging
to original dataset, the probability of sample i which does
not belong to one re-sampled dataset can be represented as:
Pi = (1− 1

n )
(t·n). In the experiments, we set t = 2.3, then Pi

is around 0.1.

B. Select Some Component CNNs for Ensemble

Once we finish the training of Algorithm 1, we need to
select m component CNNs from every dataset. Theoretically,
there exist

(
M
1

)
+
(
M
2

)
+· · ·+

(
M
M

)
kinds of selection strategies,

but several are preferred, according to the underlying model
strength difference of different cycles. Addressed concretely,
if we set the total training epochs T = 120 and M = 6 cycles,
there are four preferred selecting methods on every datasets:

• selecting m = 1 model from cycle: 6;
• selecting m = 2 models from cycles: 5, 6;
• selecting m = 4 models from cycles: 3, 4, 5, 6; and
• selecting m = 6 models from cycles: 1, 2, 3, 4, 5, 6;

If we have B = 20 bootstrap datasets, using these methods,
we will aggregate B ×m = 20, 40, 80, and 120 outputs of
CNNs, respectively.

IV. EXPERIMENTS

A. Datasets and Setup

CIFAR. The CIFAR-10 and CIFAR-100 datasets [19] have
10 and 100 classes colored natural images, respectively. For
each CIFAR dataset, there are 50,000 images for training and
10,000 images for testing, sized at 32x32 pixels.

Tiny ImageNet. The Tiny ImageNet 1 has 200 classes, in
which each class has 500 training and 50 validation images.
It is a subset of the ImageNet [20] dataset.

We compare the performance of our ensemble strategy
with other state-of-the-art strategies, such as MC and SE.
The ResNet-50 [15], DenseNet-40 [5], and DenseNet-100 [5]
architectures are used to be the CNN backbones.

1https://tiny-imagenet.herokuapp.com
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Fig. 3. Left: Train CNNs on 20 re-sampled CIFAR-100 datasets to obtain 120
component CNNs. The high prediction error shows the final 120-th CNNs has
a low correlation to other 114 CNNs models, which are trained on different
datasets. Right: The SE approach train CNNs on the original dataset and
obtain 6 models. The smooth and low prediction error shows the 6-th model
and other 5 models are close.

B. Correlation Analysis Among Component CNNs

To characterize the correlation of component CNNs, we
linearly interpolate two CNNs models in their parameter space
and calculate the prediction error of the interim models [21].
Specifically, assume J(W ) is the prediction error of a CNNs
with parameters W . Then we can calculate the prediction error
for a linear combination (λ ·W1+(1−λ) ·W2) of two models
W1 and W2, where λ ranges from 0 to 1, with a step value 0.1.
If these two CNNs are close in the energy landscape [11] (or,
high correlation), this linear combination of interim models
will have low and smooth prediction error [5].

To evaluate the correlation among the component CNNs,
we obtain 120 DenseNet-40 models from B = 20 re-sampled
CIFAR-100 datasets, with the parameters T = 120, M = 6
and m = 6. The left subfigure of Figrue 3 illustrates the
prediction error of their interim models. We can find the
prediction error between the final 120-th and other 114 CNN
models fDb,cycle , b = 1, ..., 19; cycle = 1, ..., 6. is very high
for any λ values. Therefore, training with different bootstrap
dataset actually lowers the correlation of component CNNs.

C. Bootstrap Re-sampling Makes Large Ensemble Size

The experimental results of different ensemble strategies
are summarized in Table 1. We adopt different selecting
methods, as stated in section 3.2. Actually, we can compare



TABLE I
THE CLASSIFICATION ERROR RATE (%) OF DIFFERENT ENSEMBLE STRATEGIES, SUCH AS MC, SE, AND OUR STRATEGY (OURS).BOLD IDENTIFIES THE

MAXIMUM EFFECTIVE ENSEMBLE SIZE OF SE AND OURS. RED MEANS THE PERFORMANCE BEGINNING TO DEGENERATE. NOTE THAT ONLY OUR
STRATEGY CAN MAKE THE UNBIASED STANDARD ERROR ESTIMATION WHEN MC OR SE CAN NOT GUARANTEE THE UNBIASEDNESS.

Traing Ensemble Ensemble CIFAR-10 CIFAR-10 CFAR-100 CFAR-100 Tiny ImageNet
Budget Size Strategy ResNet-50 DenseNet-40 ResNet-50 DenseNet-40 DenseNet-100

120 epochs 1×CNNs No 7.01 5.46 28.95 24.83 39.22

6×CNNs SE 5.72 4.93 24.68 22.23 36.63

720 epochs 6×CNNs MC 4.66 3.78 22.45 19.73 34.09

Ours(m = 1) 4.52 3.71 22.23 18.94 32.61

2400 epochs

20×CNNs MC 3.84 3.41 20.28 18.06 33.23

40×CNNs SE(m = 2) 3.91 3.53 21.10 19.12 33.40

Ours(m = 2) 3.87±0.19 3.41±0.21 20.81±0.32 18.10±0.34 32.69±0.27

80×CNNs SE(m = 4) 4.24 3.66 21.72 19.28 33.65

Ours(m = 4) 3.52±0.17 3.16±0.23 19.69±0.28 17.89±0.28 31.81±0.26

120×CNNs Ours(m = 6) 3.94±0.17 3.55±0.16 20.72±0.27 17.95±0.29 32.13±0.28

different strategies within the same training budget, although
the component numbers might be different. It is fair because
in the context of an ensemble of CNNs, more components do
not always mean better performance.

Considering the maximum effective ensemble size, the
performance degradation of our strategy starts from a larger
ensemble size. Specifically, the SE method starts to be over-
saturated when the ensemble size is increased from 40 to 80.
Compared with this, our strategy is still effective with the
ensemble size of 80, and it does not degenerate until further
increasing to 120. This phenomenon shows that our strategy
makes a larger ensemble size effective. Besides, in the table,
there is an unbiased standard error estimation of our strategy.
It measures how reliable the ensemble output is.

V. CONCLUSION

In this paper, we proposed a novel strategy to make the
large ensemble of CNNs, using bootstrap re-sampling. On the
one hand, the bootstrap re-sampling brings in an unbiased
estimation of the standard deviation. On the other hand, the
proposed strategy can address the over-saturation problem to
some extent. From our experiments, the maximum effective
ensemble size of component CNNs can be increased up to 80.
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